Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue.

نویسندگان

  • Jinpeng Wang
  • Xiaobing Meng
  • Zheng Yuan
  • Yaoqi Tian
  • Yuxiang Bai
  • Zhengyu Jin
چکیده

By using cyclodextrin (α-CD) self-assembly into a hydrogel with the triblock copolymer Pluronic F127, nanomicrocrystalline cellulose was introduced into a gel system to form a composite CNC-β-CD/α-CD/Pluronic F127 hydrogel (CCH). CCH was modified further by grafting acrylic acid to form a novel acrylated composite hydrogel (ACH). The swelling degree of ACH was 156 g/g. Adsorption isotherms show that the adsorption process for methylene blue proximity fitted the Freundlich model. The adsorption kinetics showed that ACH followed a quasi-second-order kinetic model. Methylene blue desorption showed that ACH was a temperature- and pH-dependent gel. Repeated adsorption and desorption experiments were carried out three times, and the removal rate of methylene blue at 75 mg/L was still 70.1%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of methylene blue using polyacrylic acid/ octavinyl polyhedral oligomeric silsesquioxane nanocomposite

Polyacrylic acid/ octavinyl polyhedral oligomeric silsesquioxane, nanocomposite hydrogel with 3-D network was synthesized via radical polymerization. Octavinyl polyhedral oligomeric silsesquioxane was used as crosslinker and nanofiller simultaneously in the preparation of the hydrogel. Hydrogel adsorption performance was determined by adsorption of methylene blue. The adsorption capacity was ev...

متن کامل

Evaluation of the Efficiency Adsorption Process with Zeolite@ in the Removal of Methylene Blue Dye from Aqueous Solutions

Introduction: Dyes are materials with a complex structure that enter the environment from textile processes such as dyeing and washing. The aim of this study was to investigate the efficiency of the absorption process using Zeolite @ ZnO in removing methylene blue dye from textile wastewater. Methods: The structure and morphology of nanoparticles were examined using XRF, FTIR and FESEM techniq...

متن کامل

Kinetics of photocatalytic degradation of methylene blue by ZnO-bentonite nanocomposite

The present study reports, the synthesis of ZnO-bentonite nanocomposite by the incorporation of ZnO with bentonite clay. The nanocomposite was characterised by XRD and SEM. ZnO-bentonite was effectively used for removal of Methylene Blue (MB). Removal of MB takes place by photocatalytic degradation and adsorption. Photocatalytic degradation of MB occurs by advanced oxidation process. The factor...

متن کامل

Kinetics and Equilibrium Studies of the Removal of Blue Basic 41 and Methylene Blue from Aqueous Solution Using Rice Stems

Synthetic dyes are among the most common contaminants of the environment. Therefore, the aim of this study was investigation the removal of Basic Blue 41 (BB41) and Methylene Blue (MB) from industrial effluents by useing raw and modified rice stems. In this study raw and modified rice stems treated chemically with Citric Acid (CA) and were used to explore the potentiality of rice stems for ...

متن کامل

The Perlite-calcium Alginate-activated Carbon Composite as an Efficient Adsorbent for the Removal of Dyes from Aqueous Solutions

To remove dyes from wastewater, the perlite-calcium alginate–activated carbon (PCA) composite was prepared by a simple method. This composite was characterized by FTIR, XRD, SEM, and BET techniques. A high capacity of PCA was observed for the adsorption of some dyes such as methylene blue (MB) and methyl orange (MO) from aqueous solutions (1111 and 909 mg g-1). The best results were achieved at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2017